Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Optogenetic control of PRC1 reveals its role in chromosome alignment on the spindle by overlap length-dependent forces.

blue iLID HeLa U-2 OS Control of cytoskeleton / cell motility / cell shape
Elife, 22 Jan 2021 DOI: 10.7554/elife.61170 Link to full text
Abstract: During metaphase, chromosome position at the spindle equator is regulated by the forces exerted by kinetochore microtubules and polar ejection forces. However, the role of forces arising from mechanical coupling of sister kinetochore fibers with bridging fibers in chromosome alignment is unknown. Here we develop an optogenetic approach for acute removal of PRC1 to partially disassemble bridging fibers and show that they promote chromosome alignment. Tracking of the plus-end protein EB3 revealed longer antiparallel overlaps of bridging microtubules upon PRC1 removal, which was accompanied by misaligned and lagging kinetochores. Kif4A/kinesin-4 and Kif18A/kinesin-8 were found within the bridging fiber and largely lost upon PRC1 removal, suggesting that these proteins regulate the overlap length of bridging microtubules. We propose that PRC1-mediated crosslinking of bridging microtubules and recruitment of kinesins to the bridging fiber promotes chromosome alignment by overlap length-dependent forces transmitted to the associated kinetochore fibers.
2.

Optogenetic reversible knocksideways, laser ablation, and photoactivation on the mitotic spindle in human cells.

blue iLID U-2 OS
Methods Cell Biol, 26 Apr 2018 DOI: 10.1016/bs.mcb.2018.03.024 Link to full text
Abstract: At the onset of mitosis, cells assemble the mitotic spindle, a dynamic micromachine made of microtubules and associated proteins. Although most of these proteins have been identified, it is still unknown how their collective behavior drives spindle formation and function. Over the last decade, RNA interference has been the main tool for revealing the role of spindle proteins. However, the effects of this method are evident only after a longer time period, leading to difficulties in the interpretation of phenotypes. Optogenetics is a novel technology that enables fast, reversible, and precise control of protein activity by utilization of light. In this chapter, we present an optogenetic knocksideways method for rapid and reversible translocation of proteins from the mitotic spindle to mitochondria using blue light. Furthermore, we discuss other optical approaches, such as laser ablation of microtubule bundles in the spindle and creation of reference marks on the bundles by photoactivation of photoactivatable GFP. Finally, we show how different optical perturbations can be combined in order to acquire deeper understanding of the mechanics of mitosis.
Submit a new publication to our database